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Chaotic mixing of fluids in slow flows is ubiquitous but incompletely understood. 
However, relatively simple experiments provide a wealth of information regarding 
mixing mechanisms and indicate the need for complementary theoretical de- 
velopments in dynamical systems. In this work we present a versatile cavity flow 
apparatus, capable of producing a variety of two-dimensional velocity fields, and use 
i t  to conduct a detailed experimental study of mixing in low-Reynolds-number flows. 
Since the goal is detailed understanding, only two time-periodic co-rotating flows 
induced by wall motions are considered : one continuous and the other discontinuous. 
Both types of flows produce exponential growth of intermaterial area, as expected 
from chaotic flows, and a mixture of islands and chaotic regions. A procedure for 
identifying periodic points and determining their movements is presented as well as 
how to make meaningful comparisons between periodic flows. We observe that 
periodic points move very much as a planetary system ; planets (hyperbolic points) 
have moons (elliptic points) with twice the period of the planets; furthermore the 
spatial arrangement of periodic points becomes symmetric a t  regular time intervals. 
Detailed analyses reveal complex behaviour : birth, bifurcation, and collapse of 
islands; formation and periodic motion of coherent structures, such as islands and 
large-scale folds. However, the richness and complexity of the results obtained 
indicate that these two-dimensional time-periodic systems are far from completely 
understood and that other wall motions might deserve a similar level of scrutiny. 

1. Introduction 
Mixing of viscous fluids without molecular diffusion is ubiquitous in nature and 

industry. It is relevant to problems ranging from geophysics to the processing of 
polymers; however, various aspects are still not understood. In  fact, with the 
exception of a handful of articles on polymer processing and earth sciences, the topic 
has received disproportionately little attention and only a few works have addressed 
the problem from an experimental viewpoint (for references in the context of 
polymer processing see Middleman 1977 ; Ottino & Chella 1983, for the role of mixing 
in earth sciences, see Allkgre & Turcotte 1986 and Weijermars 1988). In  this article 
we present a detailed experimental analysis of the mixing structures produced in a 
class of two-dimensional time-periodic flows capable of producing chaotic advection. t 

The primary objective of this work is to  develop techniques for the analysis of 
mixing in chaotic flows without an exact knowledge of the velocity field. 

t A description of applications, as well as a short preview of the results corresponding to this 
system as well as others, was published recently (Ottino et ul. 1988). Background material, as well 
as analytical and computational examples of chaotic mixing in various systems are presented in 
Ottino ( 1 9 8 9 ~ ) .  
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Conventional computational and analytical studies (see table 7.1 in Ottino 1989a) 
necessitate an analytical solution for the velocity field which is unavailable in most 
cases of practical interest. Other systems, such as the flow between eccentric 
cylinders can be analysed also in terms of computations (Aref & Balachandar 1986; 
Chaiken et al. 1986; Xwanson & Ottino 1990). However, as has been pointed out, 
there are inherent limitations to computational studies, and computational, 
analytical, and experimental studies play complementary roles in the analysis of 
mixing (Ottino et al. 1988). Rather ‘simple ’ mixing flows, such as those corresponding 
to the experiments reported here can take lo2 years of computational time in a 
megaflop machine (Franjione & Ottino 1987). Also, an investigation of chaotic 
mixing in two-dimensional time-periodic flows provides a transparent visual 
analogue for chaos in area-preserving maps and Hamiltonian systems, some of t)he 
oldest and most established systems to be analysed in the context of what is now 
grouped under the heading of dynamical systems (see Ottino 1989a). Indeed, 
experimental studies can be regarded as an analogue of the usual discrete 
computational investigations and in several instances provide a finer resolution. 

In  this article we seek an understanding of chaotic mixing based upon the 
observation of the resulting macroscopic structures, and their variation and 
bifurcation with the governing parameter of the flow. The structures under 
consideration will be those that are delineated rather quickly and the main 
parameter will be the period of the motion of the walls. The reader should note that 
there are two main aspects that distinguish the present kind of studies from more 
conventional studies in dynamical systems and chaos. The first aspect is that we are 
interested mostly in rate processes, i.e. rapid mixing, rather than asymptotic 
structures and long-time behaviour, as is for example, a Poincard section. The second 
aspect is that the perturbations from integrability are large, since this is what 
happens (roughly) when the best mixing occurs. These aspects, coupled with the 
absence of an analytical description of the flow, preclude analyses based on 
perturbative techniques (i.e. the standard Melnikov’s method). 

2. Experimental 
The model system chosen in this work is a substantially improved version of the 

cavity flow system introduced by Chien, Rising & Ottino (1986). The flow system, in 
general, consists of two moving walls and two static walls immersed in a fluid bath, 
as shown in figure 1. The walls motions are computer controlled, such that different 
types of wall velocity functions can be produced with relative ease. Depending on the 
motion of the walls, a variety of two-dimensional flows can be generated but only a 
few are considered here. To study the mixing process, we follow the deformation of 
a blob of a line of tracer, which is injected in the fluid. 

2.1. Experimental apparatus 

The principal objective is to design an apparatus capable of generating a variety 
of two-dimensional flows and geometrical configurations. However, only one cavity 
configuration and two types of flows are explored in this paper ; it will be apparent 
that other operating conditions deserve a similar study. A schematic view of the 
apparatus is shown in figure 1. The mixing experiments are conducted in a flow 
region confined between the belts, acting as moving walls, and the static walls (figure 
1 a )  ; ( x ,  y)-coordinates are chosen such that the origin (0,O) is at the centre of the 
cavity, z is the direction normal to  the ( x ,  y)-plane of the flow. The area of the cavity 



Experiments on mixing due to chaotic advection in a cavity 465 

FIGURE 1 .  Schematic of the cavity flow apparatus : (a )  top view; ( b )  side view. The dimensions 
of the cavity itself are H = 6.2 cm and W = 10.35 cm. 



466 C. W. Leong and J .  M .  Ottino 

can be adjusted up to a maximum of 167.4 cm2. In the experiments presented here, 
the aspect ratio W / H  is 1.67 with W = 10.35 cm and H = 6.2 cm. We focus 
exclusively on a rectangular cavity although other shapes, such as a trapezoidal 
cavity, can be implemented by changing the positions of the belts and the baffles. 
The apparatus mainly consists of three parts: the belt unit, the static wall unit, and 
a supporting structure. 

There are two belt units, each consisting of two knurled rollers (aluminium, 
7.62 cm diameter, 25.4 cm long), a neoprene belt (20.3 cm deep, 1.6 mm thick), and a 
DC shunt-wound motor (B & B Motors, model NSH-54RL, gear reduction ratio 
1 : 300) ; each motor has a built-in tachometer (B & B Motors, model SB-7427A-7) that 
generates 2.6 v.d.c. per 1000 r.p.m. The motor drives one roller directly with timing 
belt A (figure 1 b ) .  The second roller is driven indirectly by the first roller via timing 
belt B. The rollers then drive the neoprene belt. Additional tension on the neoprene 
belt is supplied by an adjustable dancer. The dancer is also used t,o prevent the 
creeping of the belt due to friction drive of the rollers and the belt. 

There are two static wall units, each consisting of a static wall (Plexiglas, 30.5 cm 
deep), a shaft, and a holder. The angular edges of the static wall minimize the 
contact with the moving belt. The shaft is attached to the static wall, which slides 
easily through the holder thus allowing the cavity aspect ratio and geometry to be 
easily modified. The holder is tightened to hold the wall in a fixed position. In 
addition, the bottoms of the walls are connected to a screw to ensure that they are 
fixed. 

The supporting structure consists of a Plexiglas tank (40.7 cm deep) and an 
aluminium frame. The Plexiglas tank houses all the units and is filled with glycerine 
(96% pure, viscosity 7.5 poise, density 1.25 g/ml) up to 35 cm deep. The aluminium 
frame reinforces the Plexiglas tank and serves to hold the two tnotors and the holders. 

2.2. Computer control system 

The computer control system (see figure 2a) has three functions: ( i )  to control the 
speed of each motor (and hence the speed of each moving wall); (ii) to control the 
direction of rotation of each motor (and hence the direction of movement each wall); 
and (iii) to control the motor drive of the camera. These functions are accomplishcd 
using a microcomputer with a multi-channel digital/analog (D/A) interface. A 
computer program individually controls the analogue output on each of three 
channels (corresponding to the functions) ; these signals are then conditioned, as 
necessary, to provide the desired function. 

The Apple IIe computer system and the D/A interface (Mountain Computer 8-bit 
D/A board, 16 analog output channels, +5 v.d.c. output, 9 ps conversion time) are 
controlled by a program written in BASIC. The program ouputs a number to the 
appropriate channel on the D/A board to determine the output on that channel. For 
the motor-direction control channel, and the camera control channel, this is merely 
on or off (0 or 3 v.d.c.) ; for the motor-speed control channel, i t  is a stepwise variable 
(0-3v.d.c.). Event timing (length of time for the walls to move, when to change 
directions, etc.) is controlled by the repetition number of a do-loop in the 
program. To ensure accuracy, the wall speed was calibrated with the digital 
output, using a linear least-squares technique (accurate to + 0.01 cm/s). Similarly, 
the timing was calibrated with the repetition number of the do-loop (accurate to 
tl ms). 

The speed of the motors is proportional to their input voltage (maximum speed a t  
110 v.d.c.). The analog output from the computer goes to a signal isolator (Penta KB 
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(a)  Schematic of the  computer control system, and (6) schematic of 
direction control relay circuit. 

the  motor- 

Power, model KBSI-240D) to protect the D/A interface ; the isolated signal is sent 
to a voltage 'booster ' (B & B Motors, model SH 102), and the boosted signal drives 
the motors. The working range of the analog output is 0-3 v.d.c., which corresponds 
to 0-110 v.d.c. from the booster. The motor changes its direction of rotation when 
the polarity of its armature is reversed. This is accomplished with a relay system (see 
figure 2 b ) ,  consisting of a single-pole-single-throw (SPST) relay (Radio Shack, 
275-232), a double-pole-double-throw (DPDT) relay (Newark Electronics, 21F1080), 
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FIGURE 3. Various sets of initial conditions used for conducting blob and line deformation 
experiments. The tracer is injected approximately 5-10 mm underneath the free surface. In (a) a 
blob, (i) or (ii), is located along the z-axis approximately 1.27 cm away from the left (or right) static 
wall; in ( b )  one blob is located at the centre of the cavity, while the other is located 1.27 cm away 
from the left static wall and along the z-axis; in (c) the initial condition is a line of dye along the 
y-axis; in (d)  the initial condition is a line of dye along the z-axis. 

and a 6 v.d.c. adapter (Radio Shack, 273-1651). The computer sends an analog signal 
to close the gate of the SPST relay, allowing l l O V  to flow from the main power 
supply to the adapter. The adapter then outputs 6 v.d.c., closing the gate of the 
DPDT relay, which switches the armature poles. A 6 v.d.c. light bulb is connected 
parallel with the line from the adapter to the DPDT relay, to give a visual indication 
of which direction the motors are turning. The camera shutter is activated (causing 
a picture to be taken), and the film is advanced, when the motor drive circuit is 
closed. This is accomplished with a SPST relay connecting the motor drive circuit to 
the analog output. 

2.3. Flow visualization 

To study the mixing process, we follow the deformation of a blob or a line of tracer. 
The tracer is injected with a syringe, roughly 5-10 mm underneath the free surface 
of the fluid, at  one or more carefully preselected locations. The tracer, a blob or a line, 
is then allowed to stretch and fold with the bulk fluid for a specific amount of time ; 
all the initial conditions used in our experiments are shown in figure 3. In  principle 
we can conduct experiments with a variety of tracers, active or passive (Ottino 
1989a). In  our studies, we choose to use a passive tracer which is a fluorescent 
dye made up of fluorescent power (Cole-Palmer, type 5-295) dissolved in glycerine. 
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The diffusion coefficient of the dye is estimated to be lo-' cmz/s and its density is 
relatively close to that of glycerine. In  fact, the dye solution can be suspended in 
glycerine for a few days without sinking to the bottom or rising to the surface. The 
dye is excited by two sets of long-wave 365 nm UV lights (Fisher, model XX-15N) 
that are hung directly above the cavity along the x-direction. When excited, the dye 
is coloured red, while, owing to some amount of UV absorption, the glycerine appears 
light blue. 

A Nikon FE2 camera with a Nikkor micro f/4.0 105 mm lens is mounted above and 
perpendicular to the flow field. The working distance is between 43 and 55 cm. Kodak 
T-Max 100 ASA film is used with an f-stop of 4.0 and an exposure time of 0.5 or 
1 s. A yellow filter (Quantaray, Y2) is added to enhance the contrast between the 
glycerine and the dye, and to reduce the UV reflections from the free-surface. The 
entire mixing experiment (evolution of the initial conditions) is recorded on video 
tape, using a 512 x 512 resolution B/W TV camera (Dage MTI-65), a Panasonic VHS 
recorder (model AG-6300), a F0R.A video timer (model VTG-M), and a Sony 
Trinitron monitor (model PVM- 1910Q). 

2.4. Time-periodic co-rotational flows and experimental conditions 

We consider two types of time-periodic wall motions (figure 4a,  b )  ; a discontinuous 
flow and a sinusoidal flow. Both flows are co-rotational; the word 'co-rotational' is 
used to designate that the top and bottom walls move in opposite directions; 
throughout this paper, the top wall moves first, unless otherwise indicated, from left 
to right and the bottom wall moves second from right to left. In  the discontinuous 
co-rotational flow, the top wall moves for half a period +T and the bottom wall also 
moves for half a period $T; both walls move a t  1.9 cm/s and there is a 5 s pause 
between each half-period. The sinusoidal co-rotational flow is of the form 

vtop = Utopsin2 -+a , Kp 1 
'hot = Ubot (e) 9 

where lUtopl = lUbotl = U = 2.69 cm/s, cop = Tbot = T .  This flow is referred to as the 
sinusoidal flow. There are two parameters in this flow: the period T and the phase 
angle a. We consider the period T as the main governing parameter; the phase angle 
a will be either in, throughout most of the work, or in, as in $4.2.2. The velocity U 
and the period T are selected such that both inertial effects and dye diffusion are 
negligible. The magnitude of the inertial effects is given by the Reynolds number and 
the Strouhal number 

where H and W are the height and width of the cavity, and v is the kinematic 
viscosity. In  our experiments, the maximum wall speed is 3.5 cm/s and the operating 
range of Re, using glycerine a t  25 "C, is 0.5-1.7. In all the experiments, Sr is 
0 . 1 0 . 2 0 .  

The operating conditions are determined by the following considerations. In  order 
to minimize diffusion effects the experiments should be conducted quickly ; however, 
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FIGURE 4. Wall motions corresponding to :  ( u )  the  discontinuous flow and (6) the sinusoidal flow 
used in the experiments ; ntap and vbot are the top and bot,tom wall velocities, respectively, and T 
is the period. Note that  in both cases the top wall moves first for $T to  exploit the symmetries of 
the flow. 

this might result in inertial effects and secondary flows. Conversely, vanishingly 
small Re necessitate long experiments to produce noticeable blob or line stretching 
and, hence, diffusion becomes important. We found that the best compromise 
corresponds to Re = O( 1). The timescale for inertial (transient) effects using glycerine 
as the working fluid is of order lo-' s, which is very small compared with the period 
T (order 101-102 s). 

The importance of the inertial effects can be checked experimentally by stretching 
an initial condition in discontinuous and continuous modes for a given amount of 
wall displacement and then reversing the wall motion. Typically, we found these 
effects to  be negligible. As a test, we conducted two experiments with Re = 1.7, a 
duration of 5 min, and a blob located a t  the centre of the cavity: first, a continuous 
uninterrupted wall motion, and second, a sequence of stopping and instantly 
restarting the motion five times. Both modes of operation showed nearly identical 
final results. More importantly, both showed kinematical reversibility (i.e. the 
deformed blob returns to its initial location). If inertial effects were important, the 
flows would not be kinematically reversible. 

As long as the creeping-flow assumption holds, the distance travelled by the 
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FIGURE 5. Steady-state (or instantaneous) streamlines corresponding to : (a )  top wall moving ; 
( b )  two walls moving in the same direction; (c) two walls moving in opposite directions; uap = 
1.58 cm/s, vbot = 1.58 cm/s (Re = 1.0). In all cases the initial condition is a line of dye injected 
along the y-axis (see figure 3 c ) .  
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moving walls is the most suitable parameter for quantification of the experiments.? 
During the time T (one period) the walls move a distance 

where atop and dbot are the displacements of the top wall and bottom wall 
respectively, and D is the dimensionless wall displacement per period. In addition, we 
define a dimensionless total wall displacement Nd = DP, which is a measure of the 
distance travelled by the walls in width units and is proportional to the total number 
of periods ( P ) .  

2.5. Streamlines 

There are three basic types of steady flows : (i) flows with one wall moving, (ii) flows 
with two walls moving in the same direction, and (iii) flows with two walls moving 
in the opposite direction ; we study all three cases, under the restriction that both 
walls move a t  the same speed. Within the creeping-flow assumption, the streamline 
portraits are independent of the actual speed of the walls. Excellent approximations 
to the streamlines can be obtained from long-time line deformation experiments : 
initially, a line of dye is injected 5 mm underneath the free surface and in the centre 
of the cavity along the y-axis (figure 3c). Then the line is allowed to stretch for 
20 min, with a wall speed of 1.58 cm/s. At this point the dye filaments lie almost 
tangential to the steady streamlines (see figure 7 (a-c), which corresponds to shorter 
times; the stretching time should be selected carefully; a much longer time, say 
60 min, results in poor resolution). Next, while the flow is still in motion, a long-time 
exposure picture is taken. The exposure time is approximately 2 min with an f-stop 
of 4.0 and a red-filter (Quantaray, R2) using Kodak T-Max 100 ASA film. 
Streamlines portraits obtained using this method are shown in figure S(a-c). 

A similar type of experiment was used to check the two-dimensionality of the flow. 
An indication of two-dimensionality, or lack thereof, can be obtained in the following 
way: two of the initial conditions are placed a t  different depths, one on top of the 
other. Since the flow is chaotic, small errors are magnified exponentially fast, and any 
deviation from two-dimensionality results in crossing of striations. We did not 
observe any crossing even at the highest Reynolds numbers encountered in this work. 
Note also that i t  is not necessary to check two-dimensionality in all experiments. 
Indeed, if the flow is not two-dimensional, the stretching and folding experiments 
conducted using a single blob will also show crossing of striations. However, as can 
be observed in the many photographs shown in this paper, the striations do not show 
any significant crossing, and the flow is indeed two-dimensional. 

3. Definitions of terms used in the interpretation of the results 
Here we collect various definitions used in the interpretation of the experimental 

results. The most frequently used terms we shall encounter are periodic points (such 
as elliptic and hyperbolic periodic points) ; islands ; bifurcations, birth, and collapse of 

t It should be noted that time is only a parameter and does not appear explicitly in a 
mathematicai description of the system. That is, if we run one experiment, and then a second one 
at twice the speed but using half the time, each will produce identical results. We have verified this 
fact experimentally (both experiments are run under creeping-flow conditions). 
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islands; and coherent structures. However, in a rather loose sense, we shall speak also 
of the shape or size of an island, even though these terms are not defined precisely 
from a mathematical viewpoint. 

A program for the investigation of chaotic fluid flows starts with the Eulerian 
velocity field u(x, t) (e.g. obtained as a solution of the Navier-Stokes equations with 
V . u = 0). The pathline of a fluid particle initially located at x = x, corresponds to  the 
solution of 

with the initial condition x = x,. The solution of (3.1) for all x,  belonging to the flow 
domain is called the flow or motion and is denoted as 

x = qw,) with x,  = dt&,), (3.2) 

signifying that the fluid particle initially located a t  x, will be found a t  position x a t  
time t .  In  two dimensions u = (v,,zly), x = (x, y), and the flow x = $t(x,) is an area- 
preserving transformation. In  particular the system (3. l )  has a Hamiltonian 
structure : 

dx a$ dy - a$ 
dt a y ’  dt a x ’  

- -- _ _ -  - -  - (3.3) 

where $ is the stream function (Aref 1984). It is possible to assert that if the velocity 
field is steady, i.e. li/ is independent of time, the velocity field is integrable and the 
system cannot be chaotic. On the other hand, if the velocity field, or equivalently $, 
is time-periodic, the phase space of the system has one additional dimension, and 
there is a good chance that the system will be chaotic. Indeed such systems appear 
to be common in practice and a few have been studied experimentally (Chien et al. 
1986; Chaiken et al. 1986; Ottino et al. 1988). As we shall see, however, the fact that 
the system is Hamiltonian is not particularly useful in the interpretation of the 
results. 

I n  the special case of a time-periodic velocity field, v(x,t) = u(x,t+T), the flow 
(3.2) can be reduced to a mapping 

xn+1= +T(xn),  (3.4) 

where we identify the position of x, a t  time t = T as xl, a t  time t = 2T as x,, and so 
on. Since the velocity field is bounded, some fluid particles return exactly to their 
original positions whereas others pass arbitrarily close to their starting points. For 
the system (3.4), if a designated particle at t = 0 returns exactly to its initial position 
after one period, i.e. t = T, but not before, then the initial location corresponds to  a 
periodic point of period one; if it returns after two periods, t = 2T, but not before 
then, the point is of period two, and so on. 

Much of the understanding of the complex behaviour of chaotic systems resides in 
the character and structure of the periodic points in the flow. The periodic points can 
be classified as hyperbolic, elliptic, or parabolic, according to the deformation of the 
fluid in the neighbourhood of the periodic point (the parabolic case being degenerate). 
The character of the point is given by the eigenvalues of the linearized mapping in 
the neighbourhood of the point. For a hyperbolic point, the two eigenvalues are real, 
while for an elliptic point, the two eigenvalues are complex conjugates of magnitude 
one. The hyperbolic points have associated invariant regions of inflow and outflow 
called the stable and unstable manifolds (a very simple introduction to periodic 
points and their associated manifolds in the context of mixing appears in Ottino 



474 C. W.  Leong and J .  M .  Ottino 

1989b). If the stable and unstable manifolds belonging to a hyperbolic periodic point 
intersect transversely, they form what is called a transverse homoclinic intersection. 
On the other hand, if the stable and unstable manifolds belonging to two different 
hyperbolic periodic points intersect transversely, they form a transverse heteroclinic 
intersection (for more precise mathematical definitions, see Guckenheimer & Holmes 
1983). 

A system can be classified as chaotic if i t  satisfies any of the following criteria : (i) 
the flow produces either transverse homoclinic or transverse heteroclinic inter- 
sections, (ii) the flow has a positive Liapunov exponent, or (iii) the flow is able to 
stretch and fold material in such a way that it produces what is called a horseshoe 
map (strictly speaking, these definitions arc not equivalent, their interrelation is 
discussed by Doherty & Ottino 1988). The flows analysed in this work can be 
classified as chaotic according to definition (iii), as indicated by Chien et al. (1986). 
Furthermore, in 54.1, we present evidence that they also satisfy definition (ii). 

Our task is to identify some of these structures in a fluid flow. However, how can 
a point be labelled as either hyperbolic or elliptic in an actual experiment ‘1 The first 
step is to show that the point is indeed periodic. Then, the order of the point is 
determined by the number of periods it takes the point to return to the same 
location. Theory, specifically the KAM theorem (see, for example Guckenheimer & 
Holmes 1983) indicates that the elliptic points are surrounded by invariant curves or 
islands, which translate and rotate, conserving their identity. Islands do not 
exchange matter with the rest of the fluid and, therefore, represent an obstacle to 
efficient mixing. Experimentally, if the point is elliptic, it usually appears as a hole 
or an island (not dye-filled) with a finite area, unless the dye was located in the 
neighbourhood of the point at the very beginning of the experiment. It should be 
clear that the central elliptic point of an island cannot be located exactly and its 
position can only be estimated within experimental error. Usually, the central 
elliptic point is located close to the centre of the island. We have observed that the 
flow within islands is mostly rotational, the stretching is linear, and the rates of 
stretching are usually much slower than in the chaotic regions of t,he flow.? In a 
typical experiment, the shape of a large island is delineated quickly in just a few 
periods, as little as four or five, and achieves some asymptotic shape as the number 
of periods is increased. The order of an island is defined as the number of periods the 
island takes to return to the same location. Indeed the most readily observable 
features in our experiments are islands and large-scale structures, such as folds. 
Islands and large-scale folds are coherent, i.e. they can be labelled and followed in 
space and time. If a periodic point is not elliptic than i t  follows that it must be 
hyperbolic. To verify that the point is actually hyperbolic, we examine the stretching 
of the surrounding structure formed during the mixing process. Material is 
compressed in one direction while stretched in another. If we place a blob on top of 
a hyperbolic point, the blob traces the structure of the unstable manifold. The 
typical structures located in the neighbourhood of a hyperbolic point are shown in 
figure 6. 

The application of the above definitions is not trivial, and a complete experimental 
investigation can be quite tedious. For example, in order to justify that a point is 
time-periodic, first a series of pictures is taken in between periods so that the 
evolution of the structures can be followed precisely. The analysis is, in general, made 

t Similar results have been observed in both computer simulations and experiments in the flow 
between two eccentric cylinders (Swanson & Ottino 1990). 
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FIQURE 0. Sketch of the structure formed by a blob deformation experiment in the 
neighbourhood of a hyperbolic periodic point. 

easier by asymptotic structures which are established rather quickly (indeed the 
term attractor, even though it is inappropriate for area-preserving systems, comes to 
mind). The number of pictures required is determined by the suspected order of the 
point under investigation. Our approach is to initially record the entire mixing 
experiment on video tape, and then review the experiment enough times as to be able 
to identify target points. Based on this information, we decide on the number of 
pictures needed. A rule of thumb is to  take pictures a t  period intervals ; for example, 
identifying a period-4 point needs 17 pictures to show that the point actually returns 
to the initial location after 4 periods. Obviously, these pictures can also be used to 
identify the character of the point under analysis. 

The bifurcation of an island is defined as an island breaking up into two or more 
islands when a governing parameter is varied (in our case, the period T or 
displacement D ) .  Usually, the bifurcation occurs when the central elliptic point of the 
island changes to hyperbolic. Conversely, the hyperbolic point can change to elliptic, 
thus forming an island. In  some cases, a change in the governing parameter causes 
the island to collapse completely, that  is, within experimental resolution, the island 
disappears and no new islands are born. 

4. Chaotic mixing 
Here we present experimental results of chaotic mixing produced by the 

discontinuous and sinusoidal flows. We begin by presenting a quantitative technique 
used to measure the stretching rates; it will be apparent that  new ways of 
quantifying mixing are needed, especially for chaotic mixing. We then proceed to 
discuss experiments focusing on the overall changes in mixing behaviour as a 
function of the dimensionless wall displacement B.  Finally, we choose two specific 
cases and use them to illustrate and discuss in detail the bifurcation, birth, and 
collapse of islands, and the structure of periodic points and coherent structures. 

16 FLM 209 
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FIGURE 7 .  Comparison of mixing in steady and chaotic flows. The initial condition is a line of 
fluorescent dye injected 5 mm below the free surface at the centre of the cavity, along the y-axis 
(see figure 3 c ) .  The three steady flows (a-c) correspond to figure ~ ( u - c ) ,  while, the chaotic flow (d )  
corresponds to the discontinuous corotational flow (D = 12.85). The top and bottom wall velocity 
is 1.9 cm/s. The total mixing time is 5 min for the steady flows with displacements N,  of ( a )  55, (6) 
110, ( c )  110. The total mixing time in the chaotic flow is 4 min 40 s (a total of 4 periods) with 
N, = 51.4. It is apparent that the chaotic flow mixes much better than the steady flows in terms 
of stretching and dispersion. 

4.1, Measurement of stretching rate 
In  mixing studies, stretching rates are commonly used to determine the 
effectiveness of a flow to generate good mixing. It is now known that steady bounded 
flows can generate a t  best a linear stretching rate, while time-periodic flows have a 
good chance of generating exponential stretching rates, at least in some regions of the 
flow. Exponential stretching is important since it implies exponential generation of 
material interface. This in turn enhances rate of mass transfer between the fluids, and 
has several practical consequences. 

The main reason that steady two-dimensional flows can only provide linear 
stretching is that material lines align with the streamlines after a short time (see Ch. 4 
in Ottino 1 9 8 9 ~ ) .  Examples of this behaviour are shown in figure 7(a-c). Figure 3 ( c )  
shows the initial condition for all the cases, figure 7 (a )  corresponds to moving the top 
wall, figure 7 (b)  to  moving top and bottom walls in the same direction, figure 7 ( c )  to 
moving top and bottom walls in opposite directions. As shown in the photographs, 
the dye line aligns with the steady streamlines and the mixing is poor. A dramatic 
contrast to this situation is provided by time-periodic operation of the cavity walls ; 
figure 7 ( d )  shows the result of a discontinuous corotational flow for a total of 4 
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Cross-section of striations 

FIGURE 8. Schematic of the effects produced by the height of the striations. The striations away 
from the focal point appear thicker than they actually are since the camera sees the lateral area 
of the striations. It is estimated that two striations closer than 10 pm are indistinguishable to the 
camera in our set-up. 

periods. Clearly, the time-periodic operation is substantially more effective in terms 
of mixing than the steady flows. 

In order to determine the effectiveness of mixing by the time-periodic and steady 
flows, we utilize image analysis. The main quantity of interest is the intermaterial 
area (perimeter) between the dye and the clear fluid as a function of time. We expect 
the continual stretching of the dye filaments to keep the dye concentration high and 
the diffusional penetration distance small ; indeed photographs indicate that the 
boundary between the dye and the clear fluid is sharp, which implies that 
penetration by diffusion is relatively small. However, the photographs also show that 
the apparent dye area grows with time. The phenomenon is due mostly to the 
photographic technique. That is, the observed dye area consists of the actual dye 
area (which is constant if diffusion is negligible) plus an apparent area due to width 
and glowing effects. Since the striations have depth, and the camera is not infinitely 
far away from the observation region, the camera is able to ‘see’ part of the lateral 
area of the stretched and folded striations (see figure 8). Also, when striations get 
very close together, the camera is unable to distinguish them. In our particular 
configuration, we estimate that when two striations are closer than 10 pm, they are 
indistinguishable ; eventually when the mixing is widespread the entire cavity 
appears to be dye-filled. Also, glowing effects, analogous to a light bulb that seems 
to appear bigger when it is illuminated, contribute to the creation of apparent area. 
This effect depends on the exposure time ; longer exposure time causes striations to 
appear thicker. One possible and partial solution to both width and glowing effects 
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FIGURE 9. (a) Fractional coverage and ( b )  perimeter growth of dye apparent area as a function of 
dimensionless wall displacement for three classes of flows: (i) steady flow with one wall moving, (ii) 
discontinuous corotational flow (D = 10.65), and (iii) sinusoidal corotational flow (D = 6.49). Both 
time-periodic flows produce exponential growth (exp (/3Nd)) in fractional coverage, A ,  and perimeter. 
P ,  with approximately the same exponent p(p = 0.022 +0.001 s-l for the discontinuous flow and 
p = 0.019f0.001 s-l for the sinusoidal flow). Both A and P grow linearly with dimensionless wall 
displacement in the steady flow. 

is to reduce the visible depth of the dye. This can be achieved by slicing the dye 
across the two-dimensional plane with a UV laser ; preliminary experiments have 
shown this to be an effective technique. However, the area growth can be used to our 
advantage. An area count yields the perimeter between the fluids. In fact, a rough 
calculation suggests that the perimeter is directly proportional to the apparent area 
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of the dye, and quantitative image analysis measurements suggest that  this is indeed 
true (see figure 9). Obviously, the observed area is bounded by the size of the cavity, 
while the perimeter is not, and therefore the proportionality between perimeter and 
area holds as long as the cavity is not completely dye-filled. A second important 
advantage is that it is much easier to measure area (count pixels) rather than to 
measure the perimeter of the dye. 

The image analysis system used in the experiments is an Analytical Imaging 
Concepts model M/T- 100, including morphometric measurement software which is 
capable of measuring the area coverage and perimeter of the dye. Both programs are 
independent ; the measurement of area is based on pixel counting; the measurement 
of the perimeter is based on counting perimeter sites after image enhancement by 
thresholding followed by differentiation. It is important to note that the perimeter 
measured will be always somewhat lower than the actual perimeter since the picture 
loses resolution when transferred from the TV camera to  the VCR and finally to the 
computer. I n  particular, striations of the same order of magnitude as the pixel size 
are lost. The measurements are somewhat dependent upon the threshold value, 
which is set based upon the histogram of the pixels values. However, since the 
contrast between the dye (white) and the bulk fluid (black) is relatively sharp, the 
histograms usually show two peaks, and the dependence upon threshold is, therefore, 
rather small. Figure 9 shows typical area and perimeter growth as a function of 
mixing time for three systems: (i) one wall moving, (ii) discontinuous flow with 
D = 10.65, and (iii) sinusoidal flow with D = 6.49. Figure 9(a) shows that the 
two unsteady flows have exponential area stretching of the form A = A ,  exp (p t ) ,  
where /? = 0.022 s-l& 0.001 s-l for the discontinuous corotational flow and 
/? = 0.019 s-l +O.OOl s-l for the sinusoidal corotational flow; the error bar is 
computed based on a variation of the threshold value by & 20 out of 256 grey units. 
However, the steady-flow stretching is linear, and a t  the completion of the 
experiment, i t  is two orders of magnitude lower than the periodic flows. The 
perimet,er growth is shown in figure 9 (b )  and follows P = Po exp ( ~ t )  for the periodic 
flows, and is linear for the steady flow. Significantly, /3 = K ,  within experimental 
error, in both time-periodic flows for area coverages of less than 50%. More 
importantly, the exponent /? can be viewed as an average Liapunov exponent and, 
since it is positive, it indicates that the time-periodic flows are, in general chaotic. It 
should be noted that the stretching rate is only indicative of how fast the dye is being 
stretched and i t  is, therefore, a FOOT indication of the dispersion of the dye 
throughout the cavity.? 

4.2. Mixing behaviour as a function of D 
In order to  further understand the mechanisms of chaotic mixing we undertook a 
study focusing on the changes of the mixing behaviour as a function of the parameter D. 

t It should be pointed out that, owing to the existence of islands of unmixed material, it is rather 
inappropriate to speak of average striation thickness of the flow especially when the island 
lengthscale is several orders of magnitude larger than the average striation thickness in the chaotic 
regions. There is clearly a need to develop more general ways of quantifying the state of the 
mixture. One possible way is to measure the fractal dimension of the stretched and folded 
structure. Measurements conducted by Professor Sreenivasan of Yale University, on some of our 
experimental results, indicate that the chaotic structures (for example, figure 7 d )  have a dimension 
of approximately 1.9, which is very close to a space-filling curve. As expected, it is not possible to 
estimate the fractal dimension of the structures produced in steady flows such as figure 7 (u-c) ; the 
structures are not fractals since there is no repetitive mechanism that producing stretching and 
folding. 
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FIQURE 10. For caption see facing page. 
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We also pay particular attention to growth, collapse, and bifurcation of large 
islands. Most of the experiments start with an initial condition involving a blob of 
approximately 7 mm in diameter located 1.27 em from the left static wall along the 
x-axis, as shown in figure 3 (a )  (i), unless otherwise indicated. In  some cases, however, 
two blobs are needed to trace out the bulk of the structures (see figure 3b) .  The 
experiments presented here are carried out long enough to clearly reveal the mixing 
structures, but not so long as to lose the resolution owing to diffusion. The typical 
duration of the experiments is about five minutes, the number of periods is in the 
order of 10, and the corresponding number of wall displacements Nd is about 90. The 
discussion begins with the discontinuous flow and is then followed by the sinusoidal 
flow. We complete the discussion by comparing the mixing produced by both flows 
with equal wall displacement per period and symmetry. 

4.2.1. Discontinuous corotational flow 

The results shown in figure 10 (a-e) correspond to the discontinuous corotational 
flow. Note that the initial condition for (b)  is located 1.27 cm away from the right 
static wall along the x-axis (figure 3a (ii)), while the others correspond to figure 3 (a) (i). 
The main experimental result is the annihilation (or collapse) of a large period-1 
island, as D increases from 6.24 to 12.85. Some of the results can be rationalized by 
means of a geometrical analysis. Close inspection reveals a ‘big fold ’ which appears 
to grow with increasing D, shown schematically in figure 10fb-e). The growth is 
due to the fact that a larger D implies larger wall displacement per period. This 
particular ‘big fold ’ is of interest because as it grows, i t  wraps within itself, causing 
the island to shrink until it collapses completely. 

The details of the process appear to be rather complicated. When D increases from 
6.24 to  8.44, the boundary of the island changes from smooth to  irregular (note the 
multiple folds along the island boundary in figure 1Oc). The appearance of multiple 
folds indicates instability ; we observed repeatedly that whenever an  island boundary 
exhibits multiple folds, the island collapses or bifurcates upon a further increase 
in D. At D = 10.65 (figure lOd), the island shrinks substantially, and a t  D = 12.85 
(figure lOe) ,  the island disappears (further details are given in $4.3.1). 

Islands obstruct transport. An example of what happens when a blob of dye is 
located close to the island boundary is shown in figure lO(a). This system has the 
same value of D as the system corresponding to figure 10 (b), except that in 10 (b) the 
initial blob is located outside the island. Figure 10(a) shows that part of the blob is 
stretched and dispersed along the island boundary. If the experiment is continued, 

FIGURE 10. Illustration of chaotic mixing produced by a discontinuous corotational flow (Re = 1.2). 
The top wall moves from left to right for half a period, BT and stops, the bottom wall moves from 
right to  left for half a period, $7’, and then stops, and so on (cf. figure 4a). There is a 5 s pause 
between half-periods to reduce inertial effects. The governing parameter is the dimensionless wall 
displacement D :  (a-e) correspond to D = 6.24,6.24, 8.44, 10.65, and 12.85, with their corresponding 
N ,  = 62.8, 62.8, 73.4, 106.3, 64.3, respectively. The initial condition for (b )  corresponds to figure 
3(a) (ii), while (a ,  c-e) correspond to figure 3(a) (i) : (a)  is an example of mixing of a blob initially 
located close to the boundary but in the interior of an island ; note that the flow conditions are the 
same as ( b )  except that the initial blob in case ( 6 )  is located outside the island. In this case, we 
observe an island of period-I collapsing and disappearing as D increases from 6.24 to 12.85. Note 
the lump structure surrounding the island in (c) ; such a structure is indicative of the instability of 
the island. The sketches on the right-hand side of (6-e) depict a ‘big fold’ that grows with increasing 
T and squeezes out the central island. 
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the dye located outside the boundary is stretched and dispersed all over the chaotic 
region, such as shown in figure lo@). A comparison between figures 10(a) and 10(b) 
reveals the size and shape of the island. However, if the blob is located close to the 
centre of the island it would be trapped indefinitely and it would not stretch 
significantly within the timescale of the eliperiment (see time-sequence in Ottino 
1989b). 

The E shown in figure 10 ( b )  denotes another kind of region which is not dye-filled. 
However, can we regard these empty regions as islands 2 According to our definition, 
an island is a region such that (i) i t  is not dye-filled, (ii) the flow within it is mostly 
rotational, and most importantly, (iii) i t  stays as a hole without dye for an indefinite 
amount of time. Within the resolution of our experiments and based upon the cases 
studied, the answer seems to be no. The black regions located within the folds usually 
disappear upon further mixing. However, we recognize that the experimental 
technique might be too coarse to identify small islands located within the space left 
between folded striations (‘incomplete folds’, see Ottino et al. 1988). 

4.2.2. Sinusoidal corotational flow 
For the sinusoidal corotational flow, we investigate two cases: a = in, in (see (2.1) 

and (2.2)). The first case, a = in, is analysed and compared briefly with the 
discontinuous flow. The second case, a = an, is analysed and compared with the first 
case to determine how the changes in a affect the overall mixing. 

The instantaneous streamlines of the flow with a = in form closed orbits with an 
elliptic point moving from y x i H  to - i H  along x = 0 in a time-periodic fashion; the 
streamlines evolve smoothly from top wall moving (figure 5a) ,  to two walls moving 
in the opposite directions (figure 5 c ) ,  to bottom wall moving (i.e. such as figure 5 a  
but rotated by 180°), and so on. Note that the evolution is smooth and not sudden 
as in the discontinuous case. Results corresponding to a = in are shown in figure 11 
(for figure 11 a d  see Plate 1). Figure 11 (a-c) corresponds to experiments conducted 
with two blobs (green and yellow). The initial locations of the blobs are as shown in 
figure 3 ( b ) .  On the other hand, figure 11 (d-g) corresponds to experiments conducted 
with only one blob located near the left static wall (figure 3a(i)) .  Figure 11 ( a )  shows 
the coexistence of two mutually exclusive chaotic regions. These regions do not mix 
even after a long time, yet it can be observed that both blobs are being stretched and 
folded significantly. Furthermore, the red region exhibits three period-3 islands 
(which correspond to the ‘eyes’ and ‘mouth’ of a ‘face’) surrounding a period-l 
island (the ‘nose ’). Notice also that the arrangement of the islands is symmetric with 
respect to the vertical axis (this is particularly clear in figure 11 a<). As D increases 
from 3.90 to 4.16 (figure 11 b ) ,  the boundary disappears, and the green and the yellow 
dyes begin to mix, although it can still be observed that the green dye has not 
penetrated inside the yellow region; the ‘face’ still can be recognized (i.e. the islands 
surrounding the periodic points are still visible). The mixing only occurs around the 
red region, where the yellow folds intermingle with the green folds. A t  a largcr value of 
D ( = 4.42, figure l lc ) ,  the green and the yellow dyes completely mix. However, at this 
operating condition, the overall mixing is bad, since several large islands appear ; at  
this point, remnants of the old ‘face’ are still evident; however, several other 
structures, rather similar to those in ( a ) ,  appear (this is the experiment displaying the 
clearest symnietry we have seen in all our experiments). When D is increased further 
to 5.19 (figure l i d ) ,  all the large islands collapse. But, beyondD = 5.19 (figure 11 e ,  g ) ,  
a large period-1 island appears and grows with increasing D. The optimum mixing 
seems to be a t  D = 5.19. The overall behaviour of this system is therefore different 
to that of the discontinuous protocol (figure 10). 
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FIGURE 11.  Illustration of chaotic mixing produced by the sinusoidal flow which corresponds to 
(2.1) and (2.2) with a = in (Re = 1.7 and 0.10 < Sr < 0.20). The pictures are taken at  the instant 
when the top wall and bottom wall are moving a t  maximum and minimum (zero) speed, 
respectively. The governing parameterD is ( a )  3.90, ( 6 )  4.16, (c) 4.42, ( d )  5.19, ( e )  6.49, (f) 7.79 and ( 9 )  
7.79, end their corresponding N,  is (a )  156.0, ( b )  166.4, (c) 176.8, ( d )  72.7, ( e )  91.9, (f) 39.0 and (9)  
109.1. (a+) Experiments conducuted with two blobs (green and yellow), the initial locations of the 
blobs are as shown in figure 3 (5) ; (d-g) experiments conducted with one blob located near the left 
static wall (figure 3a(i)). A t  small D values (a and b) ,  the system exhibits two chaotic regions (green 
and red) that do not interact or mix. At D = 4.42 (c), the system displays many large islands. A t  
D = 5.19 ( d ) ,  all the large islands collapsed, and the system becomes well mixed (near global chaos). 
But, beyond D = 5.19 ( e ,  g),  a large period-1 island appears and grows with increasing D. (f)  
illustrates the rapid delineation of a large-scale chaotic structure ; (f) and (9) have the same value 
of D. ( f )  corresponds to 5 periods and (g) to 14 periods. Note that the outline of the macroscopic 
structures of ( 9 )  is already visible in (f). 



484 C. W. L e o n g  and J .  M.  Ottino 

FIGURE 12. Chaotic mixing produced by the sinusoidal flow ((2.1) and (2.2)) with the phase angle 
u = an. The governing parameter D is (a)  5.19, ( b )  6.49, ( c )  7.79, (d )  9.09, ( e )  10.39, and (f)  11.69, 
with a corresponding displacement N, of (a) 311.6, ( I r )  260.0, ( c )  187.0, ( d )  181.7, ( e )  145.4, and ( f )  
187.0, respectively. The initial condition corresponds to figure 3(a)(i). At D = 5.19, (a ) ,  the system 
exhibits many islands which hinder the mixing significantly. This is why the experiments are 
conducted for a very long time (indicated by the relatively large values of N d ) .  The sequence of 
events from D = 5.19 to 11.69 is rather complex ; islands appear and disappear, and at two different 
values of D (9.09 and 11.69) there are no observable islands left. 

We also observed that the macroscopic structures are delineated rapidly ; finer 
details can be observed after a larger number of periods, while the macroscopic 
structures remain essentially unchanged. This behaviour is illustrated in figure 11 (f, g ) .  
Notice that the outline of the macroscopic structures a t  14 periods (figure l l g )  are 
already visible after just 5 periods (figure 1 If). The main difference is that there are 
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simply more folds after 14 periods than after 5. However, the large period-l island 
remains virtually unchanged. 

Consider now a similar series of experiments using the sinusoidal corotational flow, 
but with a = in. The results are shown in figure 12. In  general, this system behaves 
very differently from the previous two systems. Initially, at D = 5.19 (figure 12a), 
the system exhibits many regions of islands which inhibit effective mixing. In  fact, 
because of the presence of islands and slow mixing, the experiment needs to be run 
for an unusually long time (indicated by the value of N,) to successfully trace the 
chaotic regions. At D = 6.49, figure 12(b), there are two thin islands stretched out 
along the moving walls and an island located a t  the centre of the cavity. Then a t  
D = 7.79 (figure 12c), the islands are clearly defined, with a period-1 island close to 
the right static wall. Around the period-1 island, there are two period-2 islands. 
Subsequently, a t  D = 9.09 (figure 12d), all the islands disappear and the cavity is 
almost completely dye-filled; the picture is similar to that of figure 10(e) when 
rotated by 180’. At D = 10.39 (figure 12e), two large period-2 islands appear; note the 
irregularities of the island boundary. Finally, a t  D = 11.69 (figure l2f),  the two 
islands collapse and the system is completely dye-filled again ; again the picture is 
very similar to that of figure 10 (e) when rotated by 180”. Obviously, the system must 
have gone through a series of bifurcations as D varies from 5.19 to 11.69. Note also 
that the ‘maximum ’ amount of chaos (i.e. when the cavity is completely dye-filled 
from a qualitative viewpoint) occurs a t  more than one value of D (e.g. see results 
corresponding to D = 9.09 and 11.69, figures 12d and 12f, respectively). 

The islands and the macroscopic structures observed in these experiments are 
quite robust. Their location, size, and shape can be reproduced with little difficulty. 
However, upon close observation, it is possible to detect minor differences in the local 
structures, such as more or fewer folds within folds or the small folds might be folded 
in different ways. For example, in spite of some minor local differences, two different 
experiments such as figures 10(d) and 14(e) (produced under the same operating 
conditions) appear to be identical; the ‘fitting’ between figures 10(a) and 10(b) is 
even more remarkable. Undoubtedly, given the chaotic nature of the flows, the 
differences are highly dependent on the initial size and the location of the blob, 
factors which are impossible to reproduce exactly experimentally. 

4.2.3. Comparison between discontinuous $ow and sinusoidal j k w  
It appears that the structures produced by the sinusoidal corotational flow (a = 

in) are quite different from the structures produced by the discontinuous co- 
rotational flow. The overall behaviour seems to be directly opposite ; the sinusoidal 
flow has an island which grows in size with D whereas the discontinuous flow has an 
island which decreases in size with D. This seemingly opposite behaviour might be 
due to an incorrect comparison and it is important to investigate other possibilities. 

In fact, the two flows reveal enlightening similarities when they are compared on 
an appropriate basis. A suitable comparison can be made in terms of the following 
two criteria: (i) the two flows have approximately the same value of D, and (ii) the 
two flows have identical symmetry a t  the instant the picture is taken. In a broad 
sense, we search for similarities in the macroscopic structures of the flows (islands 
and large-scale folds). This idea can be made precise by means of symmetry 
arguments (see the Appendix). A symmetry is a vector operator which places 
geometrical restrictions on the motion of a fluid particle (Greene et al. 1981; 
Franjione, Leong & Ottino 1989). For example, the geometry of the streamlines 
corresponding to the steady cavity flows (figure 5) is symmetric with respect to 
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FIGURE 13. For caption see facing page. 
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reflections about the y-axis. In  the two time-periodic flows, the y-axis symmetry can 
be observed if the following conditions are satisfied, 

w ~ ~ ~ ( ~ - + T )  = V t o p ( i T - t ) ,  vbot(t-gT) = vbOt(gT-t). 

These conditions impose a restriction on the vtop and wbot to be even about the half- 
period gT (see Appendix for derivation). In  this particular situation, we can compare 
the sinusoidal flow and the discontinuous flow when we define the period of the 
discontinuous flow as follows : the top wall moves for aT and the bottom wall moves 
for gT, and finally the top wall moves for $T; note that the starting and ending 
conditions are different from the previous experiments. In  this case, both flows are 
even about $T, thus possessing the y-axis symmetry. I n  short, the reason for 
condition (ii) is to determine when is the right time to stop and take a picture, such 
that the macroscopic structures are comparable. It is important to note that in these 
experiments criterion (ii) plays a more significant role than criterion (i). 

The results are shown in figure 13 (the figures with a prime denote the sinusoidal 
flow, those without a prime the discontinuous flow). For small values of D, both 
systems appear similar ; however, a t  large values of D, the similarities diminish. 
Figures 13 (a )  and 13 (a’) and 13 ( b )  and 13 (b’) are similar, both have invariant surfaces 
close to the boundary of the cavity and similar internal structures, except that the 
size is different. Figures 13(e) and 13(c’) also show similar structures; however, the 
similarities diminish quickly from figures 13 ( d )  and 13 (d’) and beyond. 

Note that if condition (ii) is not imposed, the two systems are not readily 
comparable. A clear example is seen by comparing figures 10 ( b )  and 13 (d )  where both 
systems have approximately the same wall displacement per period (D) but different 
symmetry. The main reason for the dissimilarity is that the macroscopic structures 
and the islands move about in the cavity (see figure 15). Thus, by stopping a t  the 
precise moment, similarities between the two systems can be observed. For example, 
if we allow the system corresponding to  figure 10fb) to  continue for another quarter 
of a period (with the top wall moving) the resultant structure and the location of the 
island would look very similar to that of figure 13 (d). Here we have illustrated that 
incorrect comparisons can be very misleading and, therefore, caution must be taken 
in interpreting results from one system and extrapolating them to another. 

FIGURE 13. Comparison of chaotic mixing between the discontinuous corotational flow and the 
sinusoidal corotational flow (a  = ti) at equal wall displacement per period and the same symmetry 
a t  the instant that the picture is taken. The initial condition is a blob of fluorescent dye located 
near the left static wall (see figure 3 a ) .  The sinusoidal flow corresponds to (2.1) and (2.2) with 
periods D of (a’) 3.90, (b’) 3.90, (c’) 5.19, (d’) 6.49, (e ’ )  7.79, and (f) 9.09, with corresponding Nd of 
(a’) 156.0, (b’) 156.0, (c’) 72.7, (d’) 90.9, (e’) 140.3, and (f’) 109.1, respectively. (a’) and (b’) show that 
there are two distinct regions separated by an invariant surface; the initial condition for (b’) is 
located a t  the centre of the cavity. The period of the discontinuous corotational flow is defined as 
the top wall moving for quarter of a period, fT, and the bottom wall moving for half a period $T, 
and then the top wall moving for another quarter of a period fT. The parameter D has the following 
values: (a )  3.96, ( h )  3.96, (c) 5.36, (d )  6.70, ( e )  8.07, and (f) 9.39, and their corresponding Nd are (a )  
59.4, (b )  79.2, (c) 53.6, ( d )  74.4, ( e )  56.5, and (f) 75.2, respectively. The initial condition for ( b )  is 
located at the centre of the cavity. In general, the results show similarities of macroscopic 
structures when D is small, e.g. (a’%) and (b’-b). However, the similarities disappear quickly for 
large values of D. The general behaviour, for both systems and that over the range of D studied, 
is similar; a period-l island grows in size, then goes through various bifurcations, and finally 
collapses into many small high-period islands. 
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4.3. Analysis of speci$c cases 
In this Section, we single out a typical operating condition to illustrate the 
bifurcation, birth, and collapse of islands. Another condition is singled out to 
demonstrate the application of a technique for finding periodic points and their 
orbits. 

4.3.1. Bifurcation, birth, and collapse of islands 
Generally, when an island collapses, the chaotic region tends to become larger. 

However, the process is rarely so simple. In  some situations, an island goes through 
a bifurcation and gives birth to two or more smaller islands. For example, the central 
elliptic point of an island might become hyperbolic, and subsequently can give birth 
to  two elliptic points of the same or higher order. Clearly, it is important to conduct 
experiments that might help to unravel the mechanisms leading to island collapse or 
bifurcation. 

As a typical case we selected the discontinuous flow, since it has a relatively large 
island to begin with. Initially, we conjecture that the period-1 island, at D = 8.44 
(figure lOc), goes through a bifurcation, and at D = 10.65 (figure 10d), the 
bifurcation has already occurred. The conjecture is based upon observing the 
characteristics of the island boundary, such as the multiple folds around it a t  D = 
8.44; as mentioned earlier, multiple folds along the island boundary are indicative of 
the instability of an island. Unfortunately, the actual process is substantially more 
complicated. Figure 14 shows the frames corresponding to intermediate dis- 
placements between D = 8.81 and D = 12.30. Here we observe that the period-1 
island indeed goes through a bifurcation, a t  D = 8.92 (figure 14b), in which two 
smaller period-l islands are born. The bifurcation point is identified when the dye 
manages to penetrate through the centre of the island. Furthermore, the elliptic 
point that corresponds to the period- 1 island becomes a period- 1 hyperbolic point 
after the bifurcation. 

The bifurcation shown in this experiment is a period-doubling bifurcation. In this 
particular case the island bifurcates and gives rise to one hyperbolic and two elliptic 
points. The original island, located precisely at  the centre of the cavity, is actually 
of period +; that is, the island comes back to the same location after just half a period 
(i.e. moving the top or bottom wall only). However, strictly speaking, there is no 
such thing as a period-: point, since the most fundamental period is 1, and therefore 
the island is denoted as period-1. After the bifurcation, the two newborn islands are 
of period-1, but the hyperbolic point continues to be of period-;. The islands switch 
positions after half a period whereas the central hyperbolic point returns to the 
centre of the cavity after half a period. Note, however, that the period-doubling 
route does not have to occur in area-preserving systems and that other mechanisms 
are possible (see Khakhar, Rising & Ottino 1986). 

A na’ive analysis based on a few photographs (for example, figure 10) might suggest 
that the island decreases in size (without bifurcation) from D = 6.24 to 12.85. 
However, we have just seen that this is not true, and that the process is considerably 
more complicated. The island collapses and is born again with just a small change in 
the period D ( x 0.1 1). Earlier, in $4.2, we pointed out that the period-l island may 
have been destroyed by the ‘big fold’ that grew with increasing D. We also hinted 
at another possible reason, which is the instability of the island, based on the 
appearance of multiple folds. In general, the latter explanation is a more accurate 
description of this process. Thus, in order to capture all the essential details, it is 
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FIGURE 14. Illustration of bifurcations, birth, and collapse of islands. This system corresponds to 
a discontinuous corotational flow (cf. figure 10) in which the governing parameter D is (a )  8.81, ( b )  
8.92, (c) 9.07, ( d )  9.25, ( e )  10.65, (f) 10.94, (9 )  11.86, (h)  12.3. The initial condition corresponds to 
figure 3(a ) ( i ) .  The period-l island, visible at D = 8.81, initially goes through a bifurcation at  D = 
8.92, giving birth t o  two period-1 islands, and itself becomes a period-1 hyperbolic point. As D 
increases further, the two new-born islands collapse and the period- 1 hyperbolic point becomes 
elliptic again giving rise to another period-1 island. From then onwards, the island grows and 
finally collapses, shedding rings of small high-period islands a t  D = 12.30. 
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FIGURE 15. For caption see facing page. 
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necessary to conduct a thorough study by increasing D a t  very small intervals; 
however, this might not be possible in all cases and simple geometrical analyses 
might be the only choice. 

As mentioned earlier, the experiments are highly reproducible. However, we found 
that whenever a system is close to or a t  the bifurcation point, the experiment is not 
easily reproduced and special precautions are necessary. For example, figure 14 ( b )  
shows the bifurcation of a period-1 island into two smaller islands. This experiment 
is not easily reproduced. Usually, when a replication is attempted, the result 
corresponds to the experiment either before or after the bifurcation. The problem is 
that, in order to reproduce the bifurcation experiment, the entire apparatus has to 
behave exactly the same way as before; the size and the initial location of the blob 
have to be identical. This is a nearly impossible demand from an experimental 
system. Otherwise, away from the bifurcation point, the experiments are robust and 
easily reproduced. 

4.3.2. Periodic points and coherent structures 

The coherence of structures helps in the identification and location of periodic 
points. Conversely, the motion of periodic points aids in visualizing the motion of the 
structure and identifying the regions of stretching and folding. The case chosen for 
the analysis corresponds to the sinusoidal corotational flow with a = in and D = 
7.79 (figure 119). 

We begin the analysis by locating periodic points. In  practice, only low-order 
periodic points can be located. It is very difficult to observe higher-order ones, 
mainly because it takes a long time for them to appear. In addition, elliptic points 
are much easier to detect since they form islands. I n  order to locate the periodic 
points, we recorded the experiment on video tape and also made a poster consisting 
of 17 pictures taken at approximately $-period intervals, from period 10 to 14. Some 
of those pictures are shown in figure 15 (a-h), which displays all the periodic points 
that we have located. For this experiment, Kodak T-MAX 400 ASA film is used, and 
the film is pushed to 1600 ASA so that the shutter speed can be set a t  &, s with an 
aperture of 4.0 ; the faster shutter speed is desired since we are interested in capturing 
the structures while the experiment is in progress. In this particular experiment, we 
were able to locate periodic points up to period-4. Note, however, this does not imply 
that we have located all the period-4 points. 

The entire system behaves as a planetary one. ‘Planets’ (hyperbolic points) have 
‘moons’ (elliptic points) with twice the period (figure 15h). There are altogether six 
such systems. In  particular, there are four systems consisting of period-2 hyperbolic 
points surrounded by two period-4 elliptic points, and there are two systems 

FIGURE 15. Visualization of the movement of periodic points and islands by means of instantaneous 
snapshots of the system corresponding to figure 11 (9) taken at &period intervals, from period 10 
to period 14 (a-h). The symbols represent: A = period-1 island; B and C = period-1 hyperbolic 
periodic point ; D, E, F and G = period-2 hyperbolic periodic point ; B1, B2, C1 and C2 = period-2 
elliptic periodic point; D1, D2, E l ,  E2, F1, F2, G1 and G2 = period-4 elliptic periodic point; the 
diamonds represent hyperbolic periodic points and the circles represent elliptic periodic points. In 
(h )  the black lines connect two elliptic periodic points to a central hyperbolic periodic point, and 
all t h e  points move as a unit (see Ottino et al. 1988). The period-2 hyperbolic periodic points, F 
and G, interchange their positions after one period; hyperbolic periodic points D and E also 
interchange their positions after one period. 



492 C. W. Leong and J .  M .  Ottino 

Elliptic Hyperbolic 
point point 

/ \ , 
\ 
\ 
\ 
\ 

I \ 
I ,--+\ I 

FIGURE 16. (a )  The schematic of the flow in the neighbourhood of two elliptic periodic points and 
a hyperbolic periodic point. (b-f)  The schematic of the orbits (particle paths) traversed by periodic 
points found in the system corresponding to figure 15: (b )  shows the orbit traversed by a period-1 
elliptic point, ( c )  by a period-2 hyperbolic point, ( d )  by a period-4 elliptic point, ( e )  two period-1 
hyperbolic points, and (f)  a period-2 elliptic point. The symbols, circles and diamonds, represent 
elliptic points and hyperbolic points respectively, and the spacing between symbols corresponds to 
2 of a period. The asterisk indicates the starting location and the arrow shows the direction of 
increasing time. In ( d ) ,  the solid circles, which go with the broken line, represent the motion of the 
point throughout the first and second period; the open circles, which go with the solid line, the 
motion in periods 3 and 4. 

consisting of period- 1 hyperbolic points surrounded by two period-2 elliptic points. 
Figure 16(a)  shows a schematic view of the arrangement of the two elliptic points 
belonging to the central hyperbolic point. As observed from figure 15, the four 
systems (with a period-2 central hyperbolic point) rotate around the other two 
systems (with a period- 1 central hyperbolic point). There is a large island of period-1 
which rotates in the clockwise fashion in the cavity. All the pictures are taken when 
the flow exhibits either x-symmetry (figure 15b ,  d )  or y-symmetry (figure 15a, c ,  
e-h). In this case the periodic points are located on the symmetry line or in pairs with 
respect to the symmetry line. 

The analysis can be carried further to determine the orbits traversed by the 
periodic points and to infer the process of stretching and folding. The analysis reveals 
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five distinct particle paths or orbits : ( i )  period-1 island, (ii) period-1 hyperbolic 
points, (iii) period-2 hyperbolic points, (iv) period-2 elliptic points, and (v) period-4 
elliptic points. The five types of orbit, shown in figure 16 (b-f) ,  are obtained from the 
17 consecutive pictures by plotting the location of the point in question a t  a-period 
intervals. Each symbol (either circle or diamond) shown in the figure represents the 
location of the periodic point at successive $period intervals. The circles represent 
elliptic points and the diamonds hyperbolic points ; the asterisk indicates the starting 
location ; the arrows indicate increasing time. Figure 16 ( b )  shows the orbit traversed 
by the period-1 island, and it appears to be a simple circular motion; one can infer 
this orbit to be a period-1 orbit. Next, figure 16(c) shows the orbit traversed by a 
period-2 hyperbolic point, and this path seems to be much more interesting in that 
it forms two loops. Recall that there are two period-4 elliptic points belonging to each 
period-2 hyperbolic point and, referring to figure 15, one can see that the pair of 
elliptic points goes through a 360" rotation when the central hyperbolic point moves 
from the larger loop to the smaller loop. The orbit traversed by one of the period-4 
elliptic points is shown in figure 16 ( d ) .  This orbit is rather complex and it shows that 
the period-4 elliptic point visits a large portion of the flow domain ; there are four 
loops for this particular period-4 orbit. Figure 16(e) shows the orbits of two period-1 
hyperbolic points ; recall that  there is a pair of period-2 elliptic points belonging to 
each period-1 hyperbolic point (we purposely included two orbits to  show that they 
overlap each other). Finally, figure 16(f) shows the orbit of a period-2 elliptic point. 
This orbit also has two loops, and is similar to the orbit traversed by the period-2 
hyperbolic points. I n  a rough sense, the mixing process can be viewed as being 
produced by the motions of the periodic points - stirrers created by the flow itself. 
Good mixing in the chaotic region is due the interactions of the six stirrers ; however, 
the overall mixing is poor because of the large unmixed region not visited by the 
stirrers and occupied by the large-scale island. I n  fact, rough sketches of mixing are 
possible ; one can estimate how a line, with two ends initially located on two periodic 
points, would be stretched after 1 , 2  or 3 periods. This exercise is also useful when one 
wants to know how individual parts of the flow communicate with each other. 

5. Other related flows and conclusions 
It is clear that the discontinuous and sinusoidal corotational flows described so far 

display a complex and rich behaviour. Even though these two cases are far from 
being completely understood, it is important to show the kinds of phenomena present 
in other related flows in order to gain an appreciation of the full scope of the problem 
at hand. However, we do not expect the exact features of our results to  translate 
without modification to flows that are not topologically equivalent to the ones 
presented here or to flows that do not exhibit the same symmetries (topological 
equivalence means roughly that the instantaneous streamlines portraits of the flows 
can be deformed smoothly without change in topology to coincide with one another ; 
the term symmetry is made precise in the Appendix). In  this Section we consider 
briefly two possible flows that can be studied with our apparatus. The first flow is a 
variation of the sinusoidal flow of 54.2.2, but with both walls moving in the same 
direction (see (2.1) and (2.2) ; we take Utop = - U ,  U,,, = U ,  and 01 = in). In  this case, 
the instantaneous streamlines evolve smoothly from one elliptic point (when the top 
wall is at maximum speed and the bottom wall a t  zero speed, see figure 5a)  to two 
elliptic points (when top and bottom walls are moving at the same speed, see figure 
5 b ) ,  and then, back to one (when the top wall is a t  zero speed and the bottom is a t  
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FIGURE 17. Mixing of a blob corresponding to the initial condition of figure 3(a)( i )  under the 
sinusoidal flow of (2.1) and (2 .2 ) ,  but with both walls moving in the same direction. The governing 
parameter D has the values ( a )  3.90, ( b )  5.19, (c) 6.49, and ( d )  7.79, while N, is (a) 78.0, ( h )  62.3, (c) 
90.9, and ( d )  93.5, respectively. Although the mixing in all four cases is quite good, the best seems 
to be a t  D = 3.90. In this case, there are no large islands forming or collapsing as in the previous 
cases of figures 10, 11, and 12. Observe that in ( a ) ,  the folds are well ‘packed’ together and there 
are no observable islands. On the other hand, when the folds are not as well ‘packed’, such as in 
( b d ) ,  small islands appear. 

maximum speed, a picture like figure 5 ( a )  but rotated by 180’); note that this flow 
has a reflectional symmetry (y-axis) and a rotational symmetry. The results indicate 
that the best mixing is a t  approximately D = 3.90 (figure 17a).  Beyond L)  = 3.90, 
several small islands appear and eventually diminish in size. When observed closely, 
one can see a clearly defined macroscopic structure that changes in size and shape 
with D. During the changes, islands appear such as the ones seen at  D = 6.49 (figure 
17c). In general, this flow seems to mix better than the flows discussed in the previous 
Sections (figures 10 and 11). Note that the recirculation in this system is different 
than in the discontinuous or sinusoidal corotational flows. The fluid in the cavity can 
circulate in the clockwise or anticlockwise directions (owing to the transition from 
one elliptic point to two and vice versa) ; in the corotational flows the fluid always 
circulates in the same direction (clockwise in all our experiments). 

Another flow which we are currently investigating is a corotating tall cavity with 
aspect ratio of 0.75 (figure 18a) which displays a hyperbolic point in the steady-state 
streamlines. When both walls are moving in opposite directions, the steady 
streamlines exhibit two elliptic points and a hyperbolic point a t  the centre of the 
cavity. The streamline portrait is reminiscent of that of the blinking vortex flow 
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FIGIJRE 18. (a)  Steady-streamlines portrait of a cavity flow with an aspect ratio of 0.75 ( H  = 6.2, 
W = 4.65 cm,). The streamlines are obtained by a line deformation experiment, where a line of dye is 
injected 5 mm below the free surface and along the y-axis of the cavity. The top and bottom walls are 
moving opposite in directions at  the speed of 1.9 cm/s; the photographic techniques are described 
in $2.5. ( b )  Illustration of the chaotic mixing produced by perturbing the flow corresponding to (a)  
with a discontinuous wall motions; the top wall moves for 20 s and the bottom wall moves for 
20 s (D = 16.34). There is a 5 s pause between the transition. The wall velocity is 1.9 cm/s. The 
experiment is carried out for a total of N,  = 65.4 (a total of 4 periods). Clearly, the mixing is 
chaotic. 

(Aref 1984; Khakhar et al. 1986) except that the velocity increases gradually from 
the elliptic point and then decreases until reaching the static wall (and of course, vo 
is a function of 0 as well). To illustrate the point, we perform an experiment similar 
to the discontinuous corotational flow: moving the top wall for a time +T, and then 
moving the bottom wall for a time $T. There is a 5 s pause in between each $T. The 
result of this experiment is shown in figure 18(b). As expected, folds are generated, 
and there seem to be two large islands a t  the top and bottom of the cavity. The 
islands do not move around the cavity as much as the islands that exist in the 
previous time-periodic cavity flows. In  fact, these two islands stay close to either 
the top or the bottom of the cavity. This system is much less complicated than 
the previous cases and might be amenable to some degree of analytical inspection. 

It is clear that experiments provide considerable insight into the behaviour of 
mixing. Results show that islands are nearly inevitable and that they are the major 
obstruction to mixing. However, the islands can be destroyed by changes in 
operating conditions, but a t  the present time we can neither predict these conditions 
based on theory nor can we predict the approximate sizes of the islands created or the 
rate of growth of material lines in the chaotic regions. The understanding of all these 
issues necessit,ates new theoretical developments and not simply adaptation of 
existing theory. Undoubtedly, the analysis presented here can be extended ; for 
example, we can focus on the behaviour of horseshoes as done in Chien et al. (1986), 
and many other possibilities and extensions come to mind. However, i t  seems 
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unlikely that a complete analysis and understanding of this system can be based on 
a single viewpoint. Indeed, i t  seems likely that this experimental system (or similar 
ones) can serve as a yardstick for the applicability of theoretical concepts pertaining 
to chaotic mixing in two-dimensional flows. 

Could mixing be improved by random forcing 1 (i.e. a random sequence of top and 
bottom motions). We have also studied, though not in detail, this situation and a few 
comments might be in order. First, the number of displacements in the experiments 
reported here is rather small (order i0; we want produce mixing as fast as possible). 
Given this small number it is likely that the results will vary widely ; some of the 
sequences lead to poor mixing. Another objection is that random sequence, as 
opposed to a deterministic sequence, is hard to implement in the context of an 
engineering design. However, the most important objection is that  there are in fact 
deterministic sequences, which are not periodic, which lead to effective mixing ; such 
sequences are based on a systematic ‘destruction’ of symmetries (Franjione et al. 
i989). So far we have not found any sequence which leads to better mixing than those 
obtained by this method. 

The results obtained in terms of passive tracers can be used to launch attacks on 
more complex situations. The mixing structure obtained by means of passive tracers 
can be used as a ‘fabric ’ for other processes such as aggregation and breakup (Muzzio 
& Ottino 1988). Similar experiments to those reported here have been carried out 
using viscoelastic fluids (e.g. a solution of PAA in glycerine, tracer consisting of dye 
mixed with the polymer solution) and immiscible fluids (droplets of a low-viscosity 
fluid in glycerine, droplets mixed with a fluorescent tracer). Other examples can be 
found in Ottino et al. (1988). Undoubtedly, these physical situations are more 
complicated than the present (base) case. I n  the viscoelastic case we observe the same 
general features, such as large-scale folds, except that  the regular regions in the 
viscoelastic fluid are significantly larger than those of the Newtonian case and 
squeeze out the chaotic regions (Leong 1989). The breakup of droplets in 
the regular regions is generally less effective than in the chaotic regions and the 
general structures traced by the fragments of the dispersed fluid correspond closely 
to those of the passive case. Even though the physics of the base case is not 
completely understood, the results presented here provide a ‘fabric ’ on which to base 
the analysis of these more complex situations. However, the richness and complexity 
of the results obtained indicate that mixing in time-periodic two-dimensional flows 
is far from being completely understood. In fact, the rather large number of 
photographs included in this article is a tacit admission of our inability to condense 
the results further in terms of a few operating rules. We are confident, however, that 
experimental studies, such as this, can provide a beginning for the understanding of 
mixing in realistic flow fields. 

Finally, a few comments regarding computational prediction might be in order. 
The remarks of $1 might produce the impression that the computational prediction 
of our experimental results is impossible. This point should be clarified. Whereas a 
computational prediction of the exact arrangement of all the striations in the chaotic 
regions is beyond current capabilities, analyses based on standard finite-difference 
and finite-element schemes yield remarkably accurate predictions of the coarse 
structures (i.e. islands and folds) of all the experimental results presented in this 
work. 

We would like to thank John G. Franjione for providing the results given in the 
Appendix. This work was supported by grants of the National Science Foundation, 
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FIGURE 19. Determination of a y-symmetry in a one-wall-moving cavity flow. The closed curve 
corresponds to  a steady-state streamline shown in figure 5 (a). Under creeping flow, particle motion 
from point A to  point B due to  utop (the velocity field induced in the cavity when the top wall is 
moved with velocity vtop) is equivalent to first reflecting A across the y-axis to  A ,  followed by a 
motion -utoD (i.e. the inverse motion) from A’ to  B ,  and then reflecting B’ back across the y-axis 
to B. This construction is a geometrical demonstration of (A l), which states tha t  S is a symmetry 
of a map T if T = ST-lS. 

the Department of Energy, Division of Basic Energy Sciences, and the Materials 
Research Laboratory of the University of Massachusetts a t  Amherst. 

Appendix. Symmetries in flow fields 

paper can in principle be written in the form of a mapping: 
The motion due to a time-periodic vector field such as those considered in this 

Here, T is a vector transformation which yields the position of a particle a t  the 
(n+ 1)th period, given its position a t  the nth period. A map T is said to possess a 
symmetry if a vector operator S can be found such that 

for all x. Often, as is the case with the cavity flow, the explicit mapping is not known. 
In these cases, symmetry must be deduced through a knowledge of the geometry of 
the vector field v(x ,  t ) .  In  this case we say that the map possesses a symmetry if the 
vector field satisfies : 

S (  - v(S(x ) ,  - t ) )  = u(x,  t )  

In general, S can be orientation-preserving (determinant of the Jacobian of S = l ) ,  
in which case the operator S is called a rotational symmetry, or orientation reversing 
(determinant of the Jacobian of S = - i),  in which case S is called a rejlectional 
symmetry. Note that the rotation or reflection can be nonlinear (i.e. the Jacobian is 
not spatially homogeneous). All reflectional symmetries possess a set of fixed points 
{x} (i.e. S(x) = x) which compose theJized line of the symmetry. Near the fixed line, 
the symmetry operator acts as a reflection across the line. 
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Since the cavity flow is operated in the Stokes regime and the governing equations 
are linear, the overall velocity field can be expressed as a linear combination of the 
velocities due to the motion of the top and bottom cavity walls: 

u ( x ,  t ,  = "top(t) Utop(X)+Vbot(t) Ubot(X). (A 2) 

Here, utoP and ubot are the velocity fields that are induced owing to the steady tnotion 
of the top and bottom walls only. The streamline patterns of these steady flows are 
shown in figure 5 .  The symmetries of the motion can easily be deduced from thc 
geometry of the streamlines. 

Consider a Cartesian coordinate system with the origin located a t  the centre of the 
cavity (figure 19). Since the flow occurs in the Stokes regime, the motion due to either 
utoD or ubot is symmetric with respect to reflections about the y-axis, which is denoted 

For example, consider the motion due to utop (see figure 19). Particle motion from 
point A to point B due to utop is equivalent to first reflecting A across the y-axis to 
A', motion due to -utop (i.e. the inverse motion) from A' to B', and then reflecting 
B' back across the y-axis to B. This construction is a geometrical demonstration of 
(A l), which states that S is a symmetry of a map T if T = ST-lS. 

Now, both utop and ubot are symmetric with respect to reflections about the y-axis; 
that is 

Substituting this relation into (A 2), we obtain 

Thus, S ,  will be a symmetry of the time-dependent flow if 

= 'top(-t), 'bot(t) = .Ubot(-t). 

This can equivalently be stated as 

V t o p ( t - p )  = V t o p ( p - - t ) ,  V b o t ( t - p ) )  = vbo t (p - t ) .  

That is, both waveforms are even functions about the half-period. 
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